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Abstract— Underactuated robots often require involved rou-
tines for trajectory planning due to their complex dynamics.
Flapping-wing aerial vehicles have unsteady aerodynamics and
periodic gaits that complicate the planning procedure. In this
paper, we improve upon existing methods for flight planning by
introducing a two-stage optimization routine to plan flapping
flight trajectories. The first stage solves a trajectory opti-
mization problem with a data-driven fixed-wing approximation
model trained with experimental flight data. The solution to
this is used as the initial guess for a second stage optimization
using a flapping-wing model trained with the same flight data.
We demonstrate the effectiveness of this approach with a bat
robot in both simulation and experimental flight results. The
speed of convergence, the dependency on the initial guess, and
the quality of the solution are improved, and the robot is able
to track the optimized trajectory of a dive maneuver.

I. INTRODUCTION

Many robotics applications rely on trajectory planning to
determine feasible and optimal paths for them to follow [1]–
[3]. These systems require high levels of both speed and
accuracy, and this can be challenging because they are often
inversely related and trade offs must be considered. In the
field of flapping flight, trajectory planning is particularly
difficult because flapping dynamics are time-varying due to
the periodic gait from flapping. Past works in flapping flight
have used the technique called averaging to approximate the
dynamics without the time-varying component by averaging
the net forces over a wingbeat [4]–[6]. This technique has
been very successful for control and prediction of flapping-
wing micro aerial vehicles (FWMAV), as the wingbeat
frequencies of these small systems are much faster than the
body dynamics. However, this technique is less accurate with
larger flapping systems in which the ratio of the flapping
frequency to the natural body frequency is small (< 50), such
as the hawkmoth flapping at 26Hz [7]. Additionally, it can
be difficult to incorporate the effects from forward velocity
and body orientation.

Consequently, larger flapping systems require the use of
time-varying models with periodic flapping for applications
that need higher levels of accuracy like flying through a
narrow gap. Another layer of difficulty is added when the
time duration of the trajectory is a decision variable in the
optimization. Changing this value results in changing the
number of wingbeats of the trajectory, assuming the flapping
frequency remains constant, and this can cause difficulties
with convergence. The averaging method may improve speed
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Fig. 1: Flow chart depicting steps of parameter estimation of models and
the two-stage trajectory optimization formulation.

but suffer from critical inaccuracies, while the full dynamics
model will improve the accuracy but suffer from higher
computation time and even local optimality.

In this paper, we propose a two-stage optimization ap-
proach that uses both fixed-wing (similar to averaging) and
flapping-wing data-driven models to reduce the computation
time of generating trajectories while maintaining solution
accuracy. Figure 1 presents the steps of this approach. We use
the parameter estimation formulation and data set from [8]
to train the fixed-wing and flapping-wing models. The first
stage of the method solves the trajectory optimization prob-
lem using the fixed-wing model, and the second stage uses
this solution as the initial guess to the next optimization with
the flapping-wing dynamics model. We apply this method
to Bat Bot (B2), a bio-inspired robot mimicking bat flight
[9]–[12]. Through rigorous simulation, we demonstrate that
this two-stage approach outperforms a single-stage approach
in terms of computation time, optimality of the final result,
and invariance to poor initial guesses. Open-loop tracking
experimental results with B2 demonstrate the applicability
of this method on physical systems. A supplementary video1

describes the methods and results of this paper.

A. Background

The works in this paper are related to those in [13]. Hassan
and Taha used an averaging model to supply the initial guess
to a shooting method with the full model for analyzing stabil-
ity characteristics of a FWMAV constrained on two vertical

1https://youtu.be/-shurpI4kzw
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Fig. 2: Planar model of B2 dynamics and aerodynamics [25].

rails. The fixed-wing model for B2 is similar to the averaging
method because the model approximates the thrust produced
from flapping as a time-invariant external force. However,
we introduce a fixed aerodynamic surface that incorporates
the effects of forward velocity and body orientation which
are nontrivial for this system. These effects can be ignored
in hovering FWMAVs [14], [15]. Additionally, the model
is data-driven: it is trained using the free-flight data and
parameter estimation methods presented in [8].

Similar research has been performed in the legged systems
community. Reduced-order models such as the linear inverted
pendulum [16] have become essential for trajectory planning
in the area of bipedal locomotion [17]. Past works have
used a combination of a reduced-order model and the full
model to simplify the planning problem [3]. Marcucci et al.
[18] developed a two-stage procedure for humanoid models
in which the first stage solves a direct collocation problem
with simplifications such as reducing the number knot points,
using a pseudo-static model, and relaxing contact parameters.
This solution is used to warm-start the second stage.

While trajectory planning methods have been extensively
studied for fixed and rotary-winged systems, there have been
limited works in the realm of planning for flapping flight
[19]–[25]. Only a few of these have used optimization-
based approaches for generating feasible trajectories [22]–
[25]. Solving this problem is important for extending the
abilities of these flapping systems to allow for more complex
maneuvers and operation. Specifically for mimicking bat
flight, maneuvers like banked turning [26], upside-down
perching [27], and recovery from fall [28] have sophisticated
movement strategies. Improving the speed of trajectory plan-
ning for flapping systems is a relatively open problem that
has yet to be studied.

II. MODELS

In past works [8], we presented a data-driven model
of B2 that was trained using free-flight experiments data.
The resulting model showed favorable performance over the
existing model as a result of tuning parameters with data.
In this work, we utilize these same parameter estimation
methods to train a second model of B2 in which the wings
are fixed and the model accounts for thrust.

A. Flapping-wing model

The planar longitudinal model of B2 is displayed in
Figure 2. This model consists of four rigid links: two wings, a

tail, and a body. The moment of inertia of each is considered,
making this a multi-body system. The wings are coupled
and flap up and down on revolute joints. The flapping angle
between the body xy plane and each wing is labeled qFL.
The rotation of the wings about the span-wise axis is called
pronation-supination, and this angle is denoted qPS. The
last actuated degree of freedom (DoF) is the dorsoventral
movement of the tail, and this angle between the body and
the tail surface is labeled qDV. The unactuated coordinates are
written with respect to the center of mass (CoM) of the body
link. The pitching up and down is written as qy, x translation
(horizontal) is px, and the z translation (altitude) is pz.
These coordinates along with the inputs driving the actuated
coordinates are grouped in the configuration variable and
input vectors

q =
[
qy px pz qFL qPS qDV

]>
u =

[
uFL uPS uDV

]>
.

(1)

As in our past works [8], [25], we use the flapping-wing
aerodynamic model structure proposed by Wang [29], [30]

CL =CL1 sin2α, CD =CD0 +CD1 cos2α (2)

for the lift CL and drag CD coefficients with constants CL1 ,
CD0 , and CD1 . Additionally, we include the coupling term
between the wings and tail q̄r

PS(t) = qr
PS(t) + acoupqDV(t),

the tail mapping function, and the body plate given their
improvements in model accuracy [8]. The coupling term
with constant acoup accounts for the modeling choice of
using separate wing and tail aerodynamic surfaces. The
tail mapping function accounts for the high sensitivity of
movement about qDV = 0◦.

The dynamics of this system are written as

D(q)q̈+C(q, q̇)q̇+G(q) = Bu+Γ(q, q̇), (3)

where D is the inertial matrix, C is the Coriolis matrix,
G is the gravity vector, B is the matrix mapping inputs
to configuration variables, and Γ is the aerodynamic force
vector mapped to the configuration space via virtual work.
The input u enforces the periodic reference trajectories of
qFL and qPS as

qr
FL(t) = aFL sin(ωFLt +bFL)+ cFL

qr
PS(t) = aPS sin(ωFLt +bPS)+ cPS +acoupqDV(t).

(4)

The constant ωFL is the flapping frequency of the system.
The flapping model is denoted M . Its model parameters CL1 ,
CD1 , CD0 , and acoup along with wc (wing chord length), ts
(tail span), Ab (area of body plate), and c+DV (tail function
mapping parameter) are grouped into the vector P and se-
lected using the optimization methods from [8]. This method
is summarized in the following section.

B. Fixed-wing model

The fixed-wing model differs from the flapping model in
two ways. First, the wingbeat frequency is set to ωFL = 0
such that the wings are in the fixed configuration. Second,
an additional term is added to the model to incorporate the



average affect of thrust from flapping the wings at some fixed
frequency ωFL with some dependency of the speed of flight
vb. This thrust term is given as

‖FT‖= cT− cDv2
b, (5)

and it acts at the body CoM position aligned with the body
x-axis (forward toward the nose). The fixed-wing model
parameter vector P includes the elements of P and the
constants cT and cD.

We train this fixed-wing model of B2 using the data set and
parameter estimation methods in [8]. This data set consists of
43 free-flight experiments of 1s duration that were captured
at 100 Hz with eight Vicon T40 motion capture cameras
in the Intelligent Robotics Laboratory (IRL) flight arena at
the University of Illinois Urbana-Champaign (UIUC). The
orientation data was estimated with the VectorNav VN-100
inertial measurement unit (IMU) on B2 and was fused with
the position data from the Vicon system. The data set is
broken up into a training subset of ntrain = 13 flights and a
testing subset of the remaining ntest = 30 flights.

We minimize the multistep prediction error with the ob-
jective function

JP(P) =
ntrain

∑
i=1

N−1

∑
k=0

∥∥x̄i
sim(tk)− x̄i

exp(tk)
∥∥2

, (6)

where x̄=
[
qy px pz q̇y ṗx ṗz

]> is the underactuated
CoM coordinates. The simulated states xi

sim(tk) at each time
step tk of trial i were generated using forward Euler integra-
tion with a step size of 0.001s. The simulation was provided
the initial condition of the experimental data xi

exp(t0) and the
actuator trajectories over the flight duration.

We solved the nonlinear programming problem using the
interior-point algorithm of MATLAB’s fmincon. The original
model parameters from [25] were the initial guess for P.
The new fixed-wing model with optimized parameters P is
denoted as M . The resulting matrices D, C, G, and Γ are
functions of P. We evaluate the model performance using
the normalized root-mean-square error (NRMSE) metric
NRMSEi, j =

1
x j,max−x j,min

√
∑

N−1
k=0 (x

i
j(tk)− x̂i

j(tk))2/N of the
long-term prediction error between each underactuated state
xi

j ∈ x̄ of the experimental data and x̂i
j ∈ x̄ of the model

prediction for flight test number i. The terms x j,min and x j,max
are the state upper and lower bounds to normalized the states.
We average the NRMSE for all of the states x̄ for a given
flight i with the equation NRMSEi = ∑

nx̄
j=1 NRMSEi, j/nx̄.

In our analyses, we compute the NRMSEi for the fixed-
wing and flapping-wing models before and after optimiza-
tion, and we plot this against the average qDV angle of a
given flight in Figure 3. The optimized results for both the
fixed-wing and flapping-wing models outperform those not
optimized for the range of different tail configurations. The
NRMSE results for the optimized fixed-wing case show good
performance, close to that of the flapping-wing model.

III. TRAJECTORY OPTIMIZATION
Using the fixed-wing and flapping-wing models from the

previous section, we set up the optimization problems to be
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Fig. 3: NRMSE for fixed and flapping models before and after parameter
estimation. Each flight for a given model is plotted against the average qDV
position. Filled circles represent flights with qDV fixed at some angle, and
open circles denote flights with qDV varying in position.

solved for the first and second stages of our method.

A. Flapping-wing model

We enforce the flapping-wing dynamics (3) using the
direct collocation Hermite-Simpson separated discretization
[31]. We discretize the states and inputs into N knot points,
and we formulate the dynamics as equality constraints

c1 : Dkq̈k +Ckq̇k +Gk−Buk−Γk = 0

c2 :

xk+ 1
2
− 1

2 (xk +xk+1)− hk
8 (ẋk− ẋk+1) = 0

xk+1−xk− hk
6 (ẋk +4ẋk+ 1

2
+ ẋk+1) = 0,

(7)

where xk =
[
qk q̇k

]>, ẋk =
[
q̇k q̈k

]>, and hk = (tk+1−tk).
Here, we have introduced the midpoints between knots xk+ 1

2
,

ẋk+ 1
2
, and uk+ 1

2
as extra decision variables in the optimiza-

tion. The dynamics constraints c1 act at the k = 0,1, · · · ,N−1
knot points, and the Hermite-Simpson constraints c2 enforce
the continuity of the trajectory in between knot points. We
add q̈k at each knot point as decision variables to remove the
need for explicit derivation of the Jacobian of the dynamics in
the form ẋ= f(x,u), as well as to avoid computing the matrix
inverse of D [32]. This separates the dynamics constraints
c1 from the Hermite-Simpson constraints c2. We note that
qFL, q̇FL, q̈FL, qPS, q̇PS, and q̈PS are directly set to their
corresponding reference trajectories from (4). This embeds
the reference trajectory constraints in the optimization. As
such, q, q̇, and q̈ are functions of t f .

B. Fixed-wing model

The fixed-wing model uses a similar form of constraints
as (7), with some modifications. First, we use the fixed-wing
model dynamics and write the constraints as

c1 : Dkq̈k +Ckq̇k +Gk−Buk−Γk = 0. (8)

Second, the reference trajectories embedded in the dynamics
are qFL(tk) = cFL and qPS(tk) = acoupqDVk + cPS because
ωFL = 0. Third, the number of knot points are reduced to
N = αN (α < 1). This reduction is a critical element of this
method because without the flapping dynamics, significantly
fewer knots are needed to enforce the dynamics because the
fast oscillations from flapping are removed. This reduces
the computation time of this stage, and in turn, the overall
method.



Fig. 4: Flow chart depicting steps of two-stage trajectory optimization.

C. Two-stage optimization formulation

The steps of the two-stage optimization procedure can be
summarized by Figure 4. First, the trajectory optimization
problem with the fixed-wing model is solved. The solution to
this is used as the initial guess for the trajectory optimization
with the flapping model. The solver computes the final
solution to this problem.

The first stage of the optimization finds a locally optimal
trajectory using the fixed-wing model M . We set up the
boundary conditions and decision variables upper and lower
bounds as

c3 : zi ≤ zi ≤ zi, i = 0, . . . ,nz−1

c4 : |xi(t0)− xd
i (t0)| ≤ ε

0
i , xi ∈ x

c5 : |xi(t f )− xd
i (t f )| ≤ ε

f
i , xi ∈ x.

(9)

The constraints c3 are the upper and lower bounds of the
decision variables, for example −π/2 ≤ qy(tk) ≤ π/2. The
constraints c4 are the boundary conditions for the initial state
with slackness ε0, and c5 are the conditions for the final
state with slackness ε f . These boundary values are selected
depending on the trajectory type in Section IV.

We can separate the constraints into equality ceq and
inequality cin constraint vectors

ceq =
[
c>1 c>2

]>
, cin =

[
c>3 c>4 c>5

]>
. (10)

Given these constraints, we propose the optimization

minimize
z

J (z) =
N−2

∑
k=0

hk
2

(
q̈DV(tk+1)

2 + q̈DV(tk)2)
subject to ceq(z) = 0, cin(z)≤ 0.

(11)

The cost function J penalizes the control effort spent
moving the hindlimbs. The decision variables of the op-
timization are z =

[
t f z>0 · · · z>k · · · zN−1

]
, where

zk =
[
q>k q̇>k q̈>k u>k

]> and t f is the final time of the
trajectory, assuming the initial time t0 = 0. The time at each
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Fig. 5: Comparison of one-stage and two-stage approaches for changing
the final time t f guess given to the optimizer for launch (top-left) and
dive (top-right) trajectories, and for varying the boundary conditions for
a trajectory (bottom). Open circles denote cases where the max iteration
threshold was reached before convergence. The shading shows the mean ±
standard deviation of the optimized value of t f for all cases that converged.

knot point is given as tk = k
N−1 t f . The number of decision

variables is equal to nz = 1+(2N)(3nq +nu), where nq = 6
is the number of configuration variables and nu = 3 is the
number of inputs. We construct the initial guess for the
decision variables z by linear interpolation between the initial
x0 and final x f states from the boundary conditions. We
solve this nonlinear optimization problem with IPOPT [33],
a general purpose solver that excels at solving trajectory
optimization problems. We supply the analytically derived
constraints Jacobian to the optimizer along with the sparsity
structure to reduce computation time.

If the optimization converges and finds a feasible solution
z∗, this solution is cubically interpolated at N knot points
and used as the initial guess for the decision variables of
the optimization with the flapping-wing model. This problem
uses the objective function J (z) which matches J (z)
except N replaces N. The constraints are

ceq =
[
c>1 c>2

]>
, cin =

[
c>3 c>4 c>5

]>
. (12)

This second stage is run only if the first stage converges
because the simulation results in the following section have
demonstrated the second stage typically will not converge if
the first fails to converge. If running a significant number of
tests, eliminating the second stage provides large computa-
tional savings.

IV. RESULTS

We compared the performance of the two-stage optimiza-
tion with the previous one-stage method, i.e. running stage
two without the initial guess produced from stage one. We
considered the effects of the initial guess of t f , given the
challenges of time scaling in flapping flight, by running the
optimization for a range of different t f guesses for a launch
trajectory and a dive trajectory. Then, we ran the optimization



TABLE I: Simulation results comparing one and two stage methods for
number of cases run (N), mean cost of converged cases (J (z∗)), percent
of cases that converged (C), mean CPU time for cases that converged (t̄c),
and mean time for cases that reached the maximum number of iterations
before convergence (t̄m).

Type Case N J (z∗) C t̄c t̄m

Launch One Stage 29 2.4e+03 55% 164.4 s 343.3 s
Two Stage 29 2.4e-01 100% 75.3 s 0 s

Dive One Stage 29 1.0e+05 69% 116.5 s 224.2 s
Two Stage 29 2.3e+02 97% 52.5 s 63.0 s

Varied One Stage 135 5.7e+04 37% 69.0 s 155.4 s
Two Stage 135 4.4e+03 30% 74.8 s 64.3 s

for a variety of different initial and final states to get a rich set
of trajectories to demonstrate the improved performance of
the two-stage method over a wider range of flight conditions.
Additionally, we varied the knot factor α over the different
simulations. All simulations were run on a Windows laptop
with an i7 4600U processor and 16GB of RAM using
MATLAB 2014a. Finally, we performed experimental flight
results tracking the dive maneuver trajectory.

A. Simulation results

The launch trajectory was set by the boundary conditions
qy0 = 0◦, px0 = 0, pz0 = 0, px f ∈ [pd

x f
± ε1], pz f ∈ [pd

z f
± ε2],

q̇y0 = 7rad/s, ṗx0 = v0 cos(θ0), ṗz0 = v0 sin(θ0), q̇DV0 = 0,
and q̇DV f = 0. The initial launch velocity was v0 = 9m/s,
and the initial launch angle (i.e. direction of velocity) was
θ0 = 2◦. The desired final position was pd

x f
= 6.5m and pd

z f
=

0.75m. The tolerances ε1,ε2 = 0.01m gave a small amount
of slackness to the optimization. There were N = 36 knot
points used in the optimization with knot factor α = 1/2.
We set the boundary constraints of the dive trajectory as
those defined for the launch maneuver with the addition of
qDV0 = 4◦ to force more tail movement over the trajectory
for a dynamically different maneuver, a lower value of pz f

to force the robot to dive downward, and qy f ∈ [10±2◦] to
ensure the robot recovered its orientation at the end of the
maneuver. The values for these boundary conditions were
v0 = 6.5m/s, θ0 = 4◦, qy0 = 12◦, q̇y0 = 6rad/s, pd

x f
= 4m,

pd
z f
= 0m, ε1,ε2 = 0.01m, N = 31, and α = 1/4. For both

the launch and dive maneuvers, we ran the optimization with
varying t f guesses from 0.3s to 1.7s at intervals of 0.05s.

Using the same boundary constraints as the launch ma-
neuver, we varied the values of initial and final conditions
as v0 ∈{6,7,8m/s}, qy0 ∈{−15,−7.5,0,7.5,15◦}, and pd

z f
∈

{−2,−1.5,−1, · · · ,2m} in order to generate more variation
in the type of trajectory. We provided the guess t f =∥∥p f −p0

∥∥/( 1
2 (v0+v f )) as a good estimate for the final time,

where p0 =
[
px0 pz0

]> and p f =
[
px f pz f

]>. For all tests,
we set θ0 = qy0 , q̇y0 = 0rad/s, pd

x f
= 4.5m, ε1,ε2 = 0.01m,

N = 21, and α = 1/4. We ran the optimization routine for
every combination of v0, qy0 , and pz f , resulting in 135
different combinations.

The comparison of the computation time between the one-

stage and two-stage methods when varying t f is displayed
in Figure 5 and Table I. The plot demonstrates significant
improvements in computation time for the vast majority of
the different cases. We noticed that a large number of the
cases using the one-stage approach failed to converge within
200 iterations, denoted with unfilled circles at those points.
The final results for t f had a higher variance for the one-
stage approach, suggesting that the routine has a higher
dependency on the initial condition given to the optimization.
In all three types of simulations, the mean objective function
J (z∗) was improved with the two-stage method.

The two-stage approach also reduced computation time
for trajectories that were infeasible. Many of the proposed
optimization problems for varying boundary conditions were
infeasible because of the random combinations of boundary
conditions. Table I and Figure 5 show that the two-stage
method more quickly determined if the problem would not
converge and reach the maximum number of iterations. Stage
two would not be run if stage one did not converge, thus
reducing computation. In order to validate not running the
second stage, we ran stage two for the 84 cases where stage
one did not converge, and we found that 91.7% of these
cases also did not converge in stage two. Thus, stage two
likely will not converge if stage one does not converge. The
guess for t f was close to the optimized result for each of
the varied boundary tests, so it was expected that the one-
stage method would have similar computation time to the
two-stage method for the cases with convergence.

In summary, the primary improvements were robustness
to poor guesses for t f , improved solution quality, and faster
solving time.

B. Experimental results

We validated the two-stage approach through experimental
open-loop flight tracking tests. We used the dive trajectory
generated using the two-stage approach from the simulation
results for these experiments. The tail actuator trajectory
was embedded on B2’s microprocessor, the IMU detected
the launch acceleration, and the IMU and Vicon systems
recorded the states of the system. The experiments were
performed in the IRL flight arena at UIUC. The custom-built
launcher [8] accelerated the robot for each test. The launcher
was positioned carefully such that the initial conditions of
the experiments matched those of the optimized trajectory
as close as possible. The hardware and experiments are also
shown in the accompanying video.

The optimized trajectory and experiments are displayed in
Figure 6. The tail initially tilted up to increase the altitude,
then tilted down to bring the robot into a dive, and finally
tilted up to increase the pitch to the desired final condition.
Due to the difficulty to control the initial condition of the
phase offset of flapping angle qFL at launch, we separated
the flight results into three sets: flights with the phase of
qFL shifted slightly earlier than the optimized trajectory
(3 flights), flights with it shifted slightly later (4 flights),
and flights with it completely out of phase (13 flights,
not displayed in plots). The experiments with close initial
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Fig. 6: Open-loop tracking results of 7 flight experiments of the dive maneuver (dark blue for early-phase qFL flights, light blue for late-phase qFL flights)
compared with the optimized trajectory (red). The mean of the experiments at each time sample is plotted in solid blue, and the minimum and maximum
are plotted in the lighter shadows. The right image displays a single flight result from the early-phase qFL group.

conditions tracked the pitch angle qy and horizontal position
px fairly well. The early-phase flights tracked the altitude pz
quite well, but there was some long-term error of the altitude
pz for the flights that were launched slightly late. The data-
driven model of B2 has lower accuracy for angles between
−5◦ and 0◦ due to the tail mapping function, and this could
explain the deviation of the trajectory pz when the tail tilted
down to this range. Additionally, the flapping frequencies
between the actual and optimized varied slightly as the
flapping frequency was set by hand, and this contributed to
qy being out of phase.

C. Discussion

One of the contributing factors for failed or slow conver-
gence of the one-stage flapping model optimization is the
effect of the reference trajectories when t f is a decision
variable. When t f is changed by the optimizer, qFL and
qPS are consequently changed because they are generated
from (4) and depend on tk = k

N−1 t f . As a result, there
may be a mismatch between the dynamics constraints at
the knot points that previously matched because changing
t f changes the number of wingbeats in the trajectory. First
optimizing with the fixed-wing model in which qFL and qPS
are independent of t f simplifies the process of selecting the
optimal t∗f and provides a greater robustness to poor initial
guesses for this variable.

The optimization with the fixed-wing model requires con-
siderably less computation time than with the flapping-wing
model. When solving this nonlinear program, reducing the
number of knot points for the first stage to N = αN, where
α < 1, significantly reduces the number of decision variables.
Removing the time-periodic elements also results in fewer
iterations of the optimization.

While the two-stage method significantly outperforms
the one-stage approach, there are two minor limitations.
There are a few cases in which the first stage of the
two-stage optimization does not converge but the one-stage
optimization does converge. A solution may be possible,

but the first stage reaches the maximum allowable iterations
before convergence and the second stage is not run. Always
running the second stage would alleviate this issue, but it
comes with the trade off of increasing computation time.
Perturbing the initial guess for stage one and rerunning
could improve convergence without increasing computation
as much. Additionally, while in the majority of cases the
objective function is lower for the two-stage method, the
one-stage method does have a few cases in which it finds a
lower final objective function value. It is likely that in these
cases, the first stage gave the second stage an initial guess
that results in a local optimimum.

Finally, we note that the physical limitations of B2 prevent
more dynamic maneuvers. Given the relatively low thrust-
to-weight ratio of the robot, it is difficult for it to follow
trajectories like perching, lift off rest, or dynamic turning.
Currently, we are developing aspects of the robot to improve
its capabilities and allow for complex maneuvers.

V. CONCLUSIONS

We have presented a novel approach for planning flapping
flight maneuvers using a two-stage trajectory optimization
method with fixed-wing and flapping-wing data-driven mod-
els of the bat robot B2 trained using free-flight data. The
first stage of the approach uses direct collocation to optimize
the trajectory of the fixed-wing model, and the second stage
uses the solution to this optimization as the initial guess
to the trajectory optimization of the flapping-wing model.
Compared to a single-stage method that only optimizes the
flapping-wing model, this approach improves computation
time and the quality of solution while being more robust
to poor initial guesses. The experimental untethered track-
ing experiments with B2 demonstrate that this approach is
applicable to physical systems.
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